
PROLAC LANGUAGE REFERENCE MANUAL
Revised version of August 29, 1999

§1 Introduction 1

1.1 Terminology 1

§2 Lexical analysis 1

2.1 Identifiers 2
2.2 Keywords 2
2.3 Numbers and literals 2
2.4 Preprocessing 2
2.5 Including C code 2

§3 Modules 2

3.1 The module header 3
3.2 Supertypes 3
3.3 Imports 3
3.4 Module operators 3

§4 Namespaces 4

4.1 Defining names 4
4.2 Name lookup 4
4.3 Global names 4

4.4 Namelike expressions 4
4.5 Module namespaces 5
4.6 Namespace module

operators 6

§5 Methods 7

5.1 Static and dynamic methods 7
5.2 Overriding and dynamic

dispatch 8
5.3 Constructors 9
5.4 Implicit methods 9
5.5 Export specifications 11

§6 Fields 12

§7 Exceptions 12

7.1 Raising exceptions 12
7.2 Handling exceptions: ‘catch’ 12

§8 Types 13

8.1 Converting and casting 13

8.2 Common types 13
8.3 void 13
8.4 bool 13
8.5 Integral types 13
8.6 Module types 14
8.7 Pointer types 14
8.8 Array types 14

§9 Expressions 14

9.1 Operator precedence 14
9.2 Method calls 14
9.3 Control flow operators 16
9.4 ‘let’ 17
9.5 C blocks: ‘{...}’ 18
9.6 Member operators: ‘.’ and

‘−>’ 18
9.7 Type operators: ‘:>’ and

‘(cast)’ 18
9.8 Code motion operators 19
9.9 Lvalues 20
9.10 C operators 20

1 Introduction
This is a draft of the Prolac language reference manual.
Prolac is an object-oriented language designed for creating
efficient but readable protocol implementations. This draft
attempts to be definitive, but does not always define Prolac
semantics precisely.

A Prolac specification is stored in a single file; the Prolac
compiler reads the file, analyzes it, and produces two output
files in the C language. The first output file is a header file
containing C structure definitions corresponding to Prolac
structures; the second is a C source file containing defini-
tions for any exported Prolac methods (§5.5). Prolac is com-
pletely order-independent: anything can be used before it
is declared or defined.

In the rest of this manual, the largest Prolac structures,
modules, are discussed first, while types and expressions are
saved for last.

This manual is copyright Eddie Kohler 1997–1999. The
most current version of this manual, as well as technical
papers on Prolac and source for the Prolac compiler, is
available from http://www.pdos.lcs.mit.edu/prolac/.

1.1 Terminology

A name is either a simple name—that is, an identifier—or a
qualified name, which is a member expression ‘X.n’ (§9.6)
where ‘X’ is a name and ‘n’ is an identifier. (Note that a
pointer-to-member expression ‘X−>n’ is not a name.) The
keywords all, allstatic and constructor can be used as name
components in some contexts. Specifically, all and allstatic
are allowed in module namespace operators (§4.6) and con-
structor is allowed as a method name (§5.3).

A feature is simply something that has a name. Mod-
ules (§3), namespaces (§4), methods (§5), fields (§6), and
exceptions (§7) are features.

2 Lexical analysis
Prolac programs are stored as a sequence of ASCII
characters. As in C, whitespace—spaces, horizontal and
vertical tabs, formfeeds, carriage returns, newlines, and
comments—is ignored except when it separates other to-
kens. Prolac supports both C’s comment syntax ‘/* ... */’ and
C++’s ‘// ... newline’.

1

2.1 Identifiers

An identifier is an arbitrarily long sequence of letters, digits,
underscores, and hyphens ‘−’. Identifiers must start with a
letter or underscore; an identifier cannot contain two con-
secutive hyphens or end in a hyphen. Identifiers which differ
only in substituting hyphens for underscores and vice versa
are considered identical; thus, ‘one−thing’ and ‘one thing’
are the same identifier. (In generated C code, Prolac sub-
stitutes underscores for all hyphens.)

Some examples:

a−pretty−long−identifier is one identifier
−23x x−23 ≡ ‘− 23 x x−23’ ≡ ‘− 23 x x 23’
x−− ≡ ‘x −−’

Identifiers containing double underscores ‘ ’ or an equiv-
alent (‘− ’, ‘ −’) are reserved for the implementation.

2.2 Keywords

The following identifiers are reserved for use as keywords,
and may not be used otherwise:

all exception long static
allstatic export module super
bool false noinline then
catch field notusing true
char has outline uchar
class hide pathinline uint
constructor if rename ulong
defaultinline in self ushort
else inline seqint using
elseif int short void
end let show

These single characters serve as operators or punctuation:

! % ^ & * () − + = { } | ~
[] \ ; ’ : ” < > ? , . /

These multi-character sequences are also single tokens:

−> ++ −− :> << >> <= >= ==
!= && || += −= *= /= %= ^=
&= |= <<= >>= ==> ||| ::= %{ %}

2.3 Numbers and literals

Prolac’s definitions for number, string, and character liter-
als are the same as C’s. However, Prolac does not support
floating-point types or values, so any floating-point literal
encountered is an error. The current Prolac compiler only
has partial support for string literals.

2.4 Preprocessing

The Prolac compiler has some features to facilitate prepro-
cessing Prolac files with cpp, the C preprocessor. In particu-
lar, it understands ‘# line’ directives, and will generate error
messages with appropriate line numbers. The compiler also
generates ‘# line’ directives in its C output files.

2.5 Including C code

C code may be included in a Prolac file in two ways. First,
C blocks (§9.5) occur within method bodies, where they
specify code to run during the method’s execution. An open
brace ‘{’ within an expression introduces a C block; to read
the C block, the lexer copies characters without interpreta-
tion, respecting nested braces, until the next unbalanced ‘}’
character not in a string or character literal or a comment. C
blocks can refer to some Prolac objects using Prolac names;
see §9.5 for details.

The ‘%{’ and ‘%}’ operators specify support C code not
relating to any method; support C code is passed unchanged
to the output file at file scope. Support C code cannot refer
to Prolac objects using Prolac names.

‘%{’ can occur wherever a definition is expected; the lexer
then copies characters without interpretation until the next
‘%}’ sequence not in a string or character literal or a com-
ment. Note that support C code can therefore contain un-
balanced braces.

Support C code occurring in the input file before any ac-
tual Prolac code is collected, in order of definition, and
placed in the output C source file before any Prolac-
generated code. All other support C code is collected in
order of definition and placed at the very end of the output
source file.

3 Modules
Modules are Prolac’s basic means of organizing programs.
Modules contain methods (§5), which represent computa-
tion, and fields (§6), which represent data. Each module is
also a namespace (§4). A module is wholly self-contained;
it must explicitly import other modules if it wants to refer
to them (§3.3). Modules can be subtypes of other modules
(§3.2). A module can have a special method which initial-
izes objects of its type (§5.3). Module definitions cannot be
nested.

A module definition looks like this:

module name [:> parents...] [has imports...] {
...definitions...

}

The reserved word class is a synonym for module.

2

3.1 The module header

The module header defines the interface between a module
and the rest of the program. The interior of a module can
only refer to other modules if they have been explicitly
specified in the module’s header (or a supertype’s header).

The module header has two parts, parents and imports.
Each part is a comma-separated list of module expressions,
where a module expression is a module name possibly mod-
ified by module operators (§3.4).

The rightmost components of all parent and import
names must be distinct. These name components can be
used within the module to refer to the parents and imports.
Thus, this example is illegal:

Alice {
module M { ... }

}
Bob {

module M { ... }
}
module N has Alice.M, Bob.M {

// error: two definitions for ‘M’
}

Use module equations (§3.4.1) to get around this restriction.

3.2 Supertypes

A module may have one parent, which is another module.
The parent, if any, must be explicitly listed in the module’s
header. This parent is one of the module’s supertypes. The
supertype relation is the transitive closure of the parent
relation: if A is a supertype of B and B is C’s parent, then A
is a supertype of C.

A module inherits its supertypes’ features—their imports,
fields, namespaces, and methods. The parent’s features are
generally available without qualification under their own
names, as if the module’s definition was inserted into the par-
ent’s definition; see §4.5.2 for a detailed description of how
parents’ namespaces are combined into a module’s name-
space.

If P is a supertype of M, then a pointer to M may be
used wherever a pointer to P is expected; or, in notation,
*M :> *P (§8.6). (Unlike C++, actual objects of type M cannot
be used where objects of type P are expected.)

A module can override some of its supertypes’ methods.
On an object of that module type, the overriding definitions
will be used whenever the parents’ overridden methods are
called. This process, called dynamic dispatch, is described
in §5.2.

It is not an error to explicitly mention another parent’s su-
pertype as a parent. This is not actually multiple inheritance;
only one copy of the supertype in question is inherited. For

example, this is legal:

module M { ... }
module N :> M { ... }
module O :> M, N { ... }

This can be useful to redefine some of M’s module
operators—for example, its inline levels (§9.8.1).

3.3 Imports

If code inside a module M must refer to another module I
that isn’t a supertype of M, then M must list I as an import in
the has clause of its module header. Imports’ names, unlike
supertypes’ names, are not copied into a module’s name-
space; you must use qualified names to refer to features in
an import (but see §5.4). If M imports I, it is not necessarily
true that M :> I.

3.4 Module operators

Prolac has a powerful collection of module operators, which
are operators that act on modules instead of values. The par-
ticular operators are described later in this manual; there are
operators that control a module’s namespace (hide, show,
and rename, §4.6), operators that control how implicit meth-
ods (§5.4) are found (using and notusing, §5.4.3), and an op-
erator controlling how methods are inlined (inline, §9.8.1).
A module operator expression has a module value, so mod-
ule operators may be used anywhere a module is expected.

Each module operator described in this manual changes
a module’s secondary features (its namespace, its exported
methods, its preferred inline levels) without affecting its
primary features (its rule complement, its signatures, its
supertypes). In fact, two module expressions differing only
in module operators have the same type.

3.4.1 Module equations

A module equation defines a new name for an old module.
The syntax is:

module new−module ::=
old−module [module operators...] ;

Other modules can then refer to new−module as an abbrevia-
tion for ‘old−module [module operators...]’. A module equation
does not define a new type.

3.4.2 After-module operators

A module definition can specify operators that will be ap-
plied to the module by default. The syntax is to write mod-
ule operators directly after the module definition’s closing

3

brace. For example:

module M {
public−method ::= ...;
private−method ::= ...;

} hide private−method;

A module definition with after-module operators ‘module
M { ... } operators’ is effectively equivalent to this definition
with a module equation:

module M { ... }
module M ::= M operators;

4 Namespaces
A namespace maps names to features. The most common
examples of namespaces in Prolac are modules—each mod-
ule defines a namespace. The programmer can also create
explicit namespaces, either outside all modules (to organize
modules into groups) or within a module (to organize meth-
ods into groups). An explicit namespace is created by writing
the name of the namespace followed by an open brace ‘{’:

namespace−name {
...definitions...

}

Namespaces may be nested—a namespace may have a
parent namespace which is used during name lookup. Most
namespaces are open, meaning you can define a namespace
in parts through several definitions. (Module namespaces
are not open: each module namespace is defined in exactly
one place.)

4.1 Defining names

Every feature (module, namespace, method, field, and ex-
ception) is defined in a namespace using a name. That defin-
ing name may be either simple or qualified. If it is simple,
the feature is simply added to the current namespace under
that name. A definition with a qualified name ‘n1. · · · .nk ::=
F’ is an abbreviation for a definition within nested names-
paces, ‘n1 { ... { nk ::= F } ... }’. Thus, these two examples are
completely equivalent:

module Package.M {
namespace.method ::= ...;

}
Package {

module M {
namespace {

method ::= ...;

}
}

}

Because namespaces are open, the intermediate names-
paces created by such a definition can be extended by other
definitions.

It is an error to define two features in the same namespace
with the same name (but see §4.5.1 and §5.2 for information
on method overriding). For example:

module M has D {
D ::= ...; // error: ‘D’ redefined
namespace.f ::= ...;
namespace {
f ::= ...; // error: ‘namespace.f’ redefined

}
}

4.2 Name lookup

A recursive algorithm is used to look up a name N in a name-
space S. This happens when a name is used (for example, in
an expression).

If N is a simple name n, then Prolac searches for n in
S, then in S’s parent, then its grandparent, and so on; the
first definition found is used. If no definition is found, the
lookup fails.

If N is a qualified name ‘Nsub.n’, Prolac first uses this
algorithm recursively to look up the name Nsub in S. If the
result is a namespace S2, then Prolac searches for n in S2 (but
not its parents). If no result is found, or the original search
failed or didn’t produce a namespace, then the lookup fails.
This algorithm is described in more detail in §9.6.

4.3 Global names

The direct member operator ‘.’ can also be used as a prefix;
for example, ‘.M’ is a name. To look up a name ‘.n’, Prolac
first finds the current most global namespace, GS. Within
a module, the most global namespace is the module’s top-
level namespace; outside any module, it is the file name-
space. Once it has found GS, the name lookup proceeds as
if the expression was ‘GS.n’. This allows an expression in an
inner namespace to refer to features in an outer namespace,
whether or not their names have been reused in the inner
namespace.

4.4 Namelike expressions

Prolac allows methods which take no arguments to be called
without parentheses (§9.2). This means that an expression
which looks like a name may actually contain method calls;
for example:

4

module M1 {
a.b.c.d.e ::= ...;
method ::= a.b.c.d.e; // really just a name

}
module D {

d.e ::= ...;
}
module M2 has D {

a :> M2 ::= ...;
b.c :> D ::= ...;
method ::= a.b.c.d.e; // not just a name!
// same as:
method2 ::= let temp1 :> M2 = a() in

let temp2 :> D = temp1.b.c() in
temp3.d.e()

end end;
}

These name-like expressions are not allowed where a name
is required—here, ‘M2.a.b.c.d.e’ cannot be hidden by the
hide module operator.

4.5 Module namespaces

Every module is a namespace. Module namespaces have no
parent—they are sealed off from surrounding namespaces.
To illustrate:

module FindMe { ... }
N {

module A :> FindMe ... // finds FindMe
}
module M {

find−me−2 ::= ...;
inner {
... find−me−2 ... // finds M.find-me-2

}
... FindMe ... // does not find FindMe

}

The outside world—specifically, other modules—can only
be reached through a module’s parents and imports, which
the module explicitly declares in its module header (§3.1).

4.5.1 Original and default namespaces

Each module M has an original namespace, which is the
namespace seen inside the definition of M. It contains a
union of M’s parents’ default namespaces, as well as every
method, field, and nested namespace defined in M, and
every implicit method (§5.4) used by M.

Clients of M (modules that subtype or import M) see a
different namespace, M’s default namespace. This is equal
to M’s original namespace with all implicit methods hidden

and any after-module operators (§3.4.2) applied. (Note that
the after-module operators might show some of the implicit
methods again.)

A module M’s original namespace ONS is created by
merging all of M’s parent’s default namespaces, and then
merging M’s internal namespace into that. Finally, any im-
plicit methods referred to in M are stored in M’s original
namespace.

Imports coming from M’s parents are not merged into
the original namespace. Name conflicts during the merging
process are generally an error, unless the two names refer to
the same feature (the same supertype or the same method).

The remainder of this section describes this process in
more precise detail. We start with an empty ONS and add
definitions to it from different sources.

4.5.2 Parents and imports

If M has parent P, we first create P’s original namespace PNS.
We then copy all definitions from PNS into ONS, except for
any of its parent or import definitions.

Next, definitions for M’s parent and any imports specified
in its module header are added to ONS. Each parent or
import is defined using the identifier n that is the rightmost
component of its name. Thus, the original namespace for
M will have a feature named n representing that parent or
import.

Any conflict between a feature FP, inherited in the last
stage from the parent P, and FM, a parent or import being
added, is resolved silently in favor of FM (that is, FM replaces
FP in ONS).

4.5.3 The internal namespace

Next, we merge M’s internal namespace, INS, into ONS. A
module’s internal namespace contains the definitions the
user provided inside the module body; in particular, chang-
ing a module’s module header does not change its internal
namespace. Any conflicts between features FM, from ONS,
and FI, from INS, are resolved as follows:

1. If FM and FI are both methods, then FM must have
been inherited from some supertype. The method FI
overrides FM; there is no namespace conflict, although
there may be a type conflict. See §5.2 for details on
overriding.

2. If FM and FI are both namespaces, the contents of FI
are merged into FM. Conflicts found during the merge
are resolved using this algorithm.

3. Otherwise, an error is reported.

5

4.5.4 Implicit methods

Finally, all methods that were defined in M have their bodies
scanned for implicit methods. If a simple name in a method
body cannot be found in ONS or its appropriate subnames-
paces (§4.2), then that name is an implicit method (§5.4)
attached to some field or import, or it is undefined. For now,
the name in question is defined in ONS as a new implicit
method. Its definition will be found, or an error reported if
there is no definition, at a later stage of compilation.

The resulting namespace ONS is M’s original namespace.

4.6 Namespace module operators

This section describes the three module operators which
affect module namespaces, hide, show, and rename. These
operators are powerful tools for namespace manipulation
and access control, but may cause confusion when overused,
so be careful.

4.6.1 ‘hide’

The hide operator hides some of a module’s names. The left
operand to hide is a module expression; the right operand
is a name, a comma-separated list of names, or ‘all’, which
hides all of the module’s names. Some examples:

M hide internal−operation
M hide (evil, kill, horrible.death, maim)
M hide all

The list of names must be enclosed in parentheses because
of module operators’ high precedence (§9.1).

You may also hide names that originate in a particular
supertype. For example:

module A {
x ::= ...;
y ::= ...;

}
module B :> A {

z ::= ...;
}
... B hide A.x ... // hides x from B’s namespace
... B hide A.all ... // hides x and y from B’s namespace

However, you cannot hide names inside an import.
A group of names can be hidden with ‘hide ”pattern”’,

which hides all names that match the pattern. The usual
shell metacharacters (*, ?, and character classes [...]) may be
used within pattern. For example:

module A {
f1 ::= ...;

};
module B :> A {

a ::= ...;
bbb ::= ...;
c ::= ...;

f2 ::= ...;
} hide ” [a−b]*” // hides a and bbb

hide ”B.f*”; // hides f2, doesn’t hide f1
// (f1 didn’t originate in B)

If E is name expression, then ‘M hide E’ is equivalent to ‘M
hide ”E1”’, where E1 is E with all parentheses and whitespace
removed. Metacharacters can only be used in the string
form.

4.6.2 ‘show’

Show is the converse of hide. Hide makes names inaccessi-
ble; show makes hidden names accessible again.

The left argument to show is a module expression, and
the right argument is a list containing any number of names
‘n’ and name assignments ‘(new = old)’. A single name ‘n’ is
essentially equivalent to the name assignment ‘(n = n)’.

To evaluate a show operator applied to a module M, Pro-
lac first looks up the old name, ‘old’, in M’s original name-
space (§4.5.1). This name may be further qualified through
M’s supertypes. It is an error if the name is undefined.

Prolac then evaluates the new name ‘new’ in M’s current
namespace. This name must not be qualified through M’s
supertypes and imports.1 It is an error if a feature with this
name already exists; otherwise, Prolac binds F to this name
in the resulting module.

It is an error to show a module’s constructor in a nested
namespace or under a name other than constructor.

Note that show can be used to make a single feature
available under multiple names; for example:

module M {
bad ::= ...;

}
module M2 ::= M show (good = bad);

Since M2.bad and M2.good are the same feature—not two
copies of a feature—overriding either one will effectively
override them both.

Because old names are looked up in the module’s origi-
nal namespace, hidden renamed features cannot be shown
using the new name. This code will not work:

1. A show operation ‘M show A.n’, where there is only one name and it is
qualified through an supertype or import, is not automatically an error;
it is equivalent to ‘M show (n = A.n)’.

6

module M { r ::= ...; }
module N :>

M rename (r = weird)
hide weird // OK
show weird // error: no weird in M
show r // OK

{}

The ‘show all’ operation is not yet implemented.

4.6.3 ‘rename’

Rename changes the name you use to access a feature. The
left operand must be a module expression; the right operand
must be a name assignment ‘(new = old)’ or a list of name
assignments.

‘M rename (new = old)’ is equivalent to ‘M show (new = old)
hide old’. It is an error for either old or new to be qualified
through supertypes or imports; for new to conflict with an
existing name in M; or to attempt to rename a module’s
constructor.

5 Methods
Prolac code is written in methods. Like functions in most
programming languages, methods can take parameters and
can return a value. Methods can call one another, possibly
recursively.

Methods can be static or dynamic. Static methods are
equivalent to normal functions, while dynamic methods are
called with an implicit reference to some object of module
type.

A module may provide new definitions for some of its su-
pertypes’ dynamic methods. This process is called overrid-
ing the supertypes’ methods. When an overridden method
is called on an object with that module’s type, the call will
be handled by the new, overriding definition instead; this is
called dynamic dispatch.

Each method has an origin, which is the module that
provided the first, non-overridingdefinition for the method.
Each method definition comes from some module, which
is called its actual. For example:

module M {
f ::= ...; // origin = M, actual = M

}
module N :> M {

f ::= ...; // override: origin = M, actual = N
}

Method definitions look like this:

method−name(parameters...) :> return−type ::= body ;

Each parameter has the form name :> type. If there are no
parameters, the parentheses may be omitted. If the return
type is void (§8.3), ‘:> return−type’ may be omitted. Body is
an expression (§9); it may be omitted, in which case any call
of the method will result in a run-time error.2 Here is the
shortest method definition possible:

x::=;

Static method definitions have a static keyword before the
method name.

Methods can be arbitrarily recursive, and the Prolac com-
piler turns tail-recursive methods into loops.

5.1 Static and dynamic methods

A dynamic method defined in module M is called with ref-
erence to some object whose type is either M or one of M’s
subtypes. Within the method body, this object is called self.
Any dynamic method call must provide a value for self; this
is done with member operator syntax (§9.6). The intuition
is that the method is also a member of the module. For
example:

module M {
r ::= ...;

}
module N has M {

... let m :> M in
m.r

end ...
}

It is an error to refer to a dynamic method without reference
to an object. This is a special case of the rules for static and
dynamic context described in §9.6.

Within a dynamic method, ‘self.’ can be elided in field
and method references. For example, these two method
definitions are identical:

module M {
method ::= ...;
field f :> ...;
d1 ::= self.method, self.f;
d2 ::= method, f;

}

It is an error to refer to ‘self’, explicitly or implicity, in a
static method.

2. Such a method can still be overridden, however.

7

5.2 Overriding and dynamic dispatch

A method declared with the same name as a supertype’s
method is an overriding method (§4.5.3). This section de-
scribes the semantics of overriding.

Both dynamic and static methods may be overridden, but
dynamic dispatch only occurs on dynamic methods.

5.2.1 Correctness

Every override of a static method MA by a static method
MB is legal.

An override of dynamic method MA by dynamic method
MB is correct only if MB’s signature—i.e., the number and
types of its parameters and its return type—agree with MA’s
by the usual contravariance rule. Specifically:

1. MA and MB must take the same number of parameters.

2. For corresponding parameter types PA and PB, we
must have PA :> PB; that is, PA and PB are equal, or PB
is a supertype of PA. Thus, the overriding parameters
are the same as, or more general than, the overridden
parameters. This ensures that any value passed as a
parameter to MA is also valid as a parameter to MB.

3. For the methods’ return types TA and TB, we must
have TB :> TA; that is, TA and TB are equal, or TB is a
subtype of TA. Thus, the overriding return type is the
same as, or more specific than, the overridden return
type.

It is an error to define an incorrect override.
Every override of a static method by a dynamic method,

or a dynamic method by a static method, is an error.

5.2.2 Method selection

The process of deciding which method definition to use
for a given dynamic method call is called method selection.
Method selection depends on only one factor: the run-time
type of the object which will become the method’s self.

In Prolac, an object of type M, where M is a module, can
be used in place of any of M’s supertypes. Therefore, an
object’s run-time type, or the actual type of the object used
at run time, can differ from its static type, or the type used
to declare the object.

For objects of simple module type, the static type is always
identical to the run-time type; Prolac’s semantics are call-
by-value, like C, rather than call-by-object, like Clu. An
object’s static and run-time types can differ only if the object
is referenced through a pointer (§8.7) or the object is self.
(Unlike any other value, self is actually a reference.) For
example:

module M {

f ::= ...;
}
module N :> M { ... }
module U has M, N { ...

let m :> *M = ..., n :> *N = ... in
m = n, // *m has static type M but run-time type N,
// as the m pointer actually points to the n object.
m−>f // Within f, self will have run-time type N.
...

}

The method selected for a method call O.f depends then
on the run-time type of O. Let the run-time type of O be T;
then we select the most specific definition for f existing in
T and its supertypes. More precisely, consider all possible
definitions for f coming from T and all of its supertypes. Let
these definitions be d1, . . . , dk, coming from modules M1,. . . ,
Mk. Because Prolac is restricted to single inheritance, the
modules M1,. . . , Mk must form a total order under the
supertype relation. Let Ms ∈ {M1,. . . , Mk} be the most
specific module in this order—that is, we have Ms :> Mi
for all Mi ∈ {M1,. . . , Mk}. The definition selected for the
method call is then ds, the method definition from Ms.

5.2.3 ‘super’

A module can specify that its parent’s definition for a method
be used by calling the method through the special object
super. For example:

module One {
f :> int ::= 1;

}
module Two :> One {

f :> int ::= 1 + super.f; // returns 2
}
module Three :> Two {

f :> int ::= 1 + super.f; // returns 3
}

Except for its behavior in relation to dynamic methods,
super acts exactly like self.

Any dynamic method in the module can use super to call
any inherited method; it is not limited to calling the parent’s
version of the current method. For example:

module One { f :> int ::= 1; }
module Two :> One {

f :> int ::= 2;
old−f :> int ::= super.f; // returns 1

}

8

Using super is not the same as calling a method through
the parent’s name, since calling the method through the
parent’s name still refers to the most specific definition of
the method. For example:

module One { f :> int ::= 1; }
module Two :> One {

f :> int ::= 2;
test ::= f, // calls Two.f
One.f, // also calls Two.f
super.f, // calls One.f
super.One.f, // also calls One.f
One.super.f; // error

}

5.3 Constructors

Each module may contain a special method, called its con-
structor, which is called when objects of the module type
are created. (See §9.2.2 for more information on when con-
structors are called.) The constructor is distinguished by
its name, which is the keyword ‘constructor’. A constructor
must appear in the module’s top-level namespace; it must
not be static and must not define a return type, but it can
take parameters.

The body of a constructor method is parsed differently
than those of normal methods. It consists of zero or more
subobject constructor expressions separated by commas, fol-
lowed by a normal expression. A subobject constructor ex-
pression is just a constructor call (§9.2.2) for the module’s
parent or one of its fields. For example:

module Counter {
field c :> int;
constructor(n :> int) ::= c = n;

}
module Counter2 :> Counter {

field f :> Counter;
constructor(n1 :> int, n2 :> int) ::=

Counter(n1), // parent constructor expression
f.constructor(n2); // field constructor expression

}

In a normal context, the subexpression ‘Counter(n1)’ would
have no visible effect; it’d create a new Counter object, then
throw away the result. As a parent constructor expression,
however, it does have a visible effect—specifically, initializ-
ing the Counter module.

If a parent or field is not mentioned in a subobject con-
structor expression, its constructor is called without argu-
ments. It is an error to omit a subobject constructor ex-
pression for a parent or field whose constructor requires
arguments.

If no constructor is provided for a module, Prolac will
generate a default constructor which calls any necessary
parent or field constructors. The parent’s constructor may
take arguments, in which case the generated constructor
will take the same number and types of arguments and pass
them to the parent’s constructor.

5.4 Implicit methods

Explicit methods are methods the user explicitly defines.
Implicit methods, on the other hand, are created auto-
matically when a Prolac expression refers to an undefined
name (§4.5.4). The compiler will fill in the implicit method’s
definition by looking through the module’s fields and im-
ports, subject to any using and notusing module operators,
until it finds a method with the same name. Implicit meth-
ods can considerably simplify the text of a module by eliding
frequently-used object or module names.

A motivating example seems in order. Consider a module
Segment−Arrives implementing part of the TCP protocol.
This module will frequently refer to the current transmis-
sion control block, tcb, which has type *TCB. Here is a partial
definition for a hypothetical TCB module:

module TCB {
field state :> int;
field flags :> int; ...
// Which state are we in?
listen ::= state == 0;
syn−sent ::= state == 1;
syn−received ::= state == 2;
...

}

Now, how should we implement Segment−Arrives? We
want to divide computation into many small methods, so we
could make tcb a parameter to each; however, passing the
parameter would quickly become tiresome. Therefore, we
make tcb a field in Segment−Arrives. Here is a sample of
what our code might look like, considerably simplified for
didactic purposes:

// Example 1
module Segment−Arrives has TCB {

field tcb :> *TCB;
check−segment ::=
(tcb−>listen ==> do−listen)
|| (tcb−>syn−sent ==> do−syn−sent)
|| (tcb−>syn−received ==> do−syn−received)
|| (tcb−>established ==> do−established)
...; // and much more!

}

9

The repetition of ‘tcb−>’ is tedious and hinders quick com-
prehension of the code. We know Segment−Arrives deals
with only one tcb; why should we have to tell the compiler
which tcb we mean again and again?

One solution is to generate forwarding methods in
Segment−Arrives. We hide these forwarding methods us-
ing after-module operators (§3.4.2), since they are artifacts
of the implementation.

// Example 2
module Segment−Arrives has TCB {

field tcb :> *TCB;
check−segment ::=
(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)
...;

listen ::= tcb−>listen;
syn−sent ::= tcb−>syn−sent;
...

} hide (listen, syn−sent, ...);

This is better; however, the forwarding methods clutter the
module definition and, again, are tedious and error-prone
to write.

The solution in Prolac is to use implicit methods. We
use the using module operator (§5.4.3) to open tcb for im-
plicit method search. When the compiler creates Segment−
Arrives’s original namespace, it searches its methods for
undefined names, entering them in Segment−Arrives’s top-
level namespace as undefined implicit methods. Later, it
creates their definitions through a search process. It marks
the implicit methods as highly inlineable and hides them in
the default namespace. Thus, the compiler transforms the
following code into something like Example 2:

// Example 3
module Segment−Arrives has TCB {

field tcb :> *TCB using all;
check−segment ::=
(listen ==> do−listen)
|| (syn−sent ==> do−syn−sent)
...;

}

In Example 3, unlike the earlier examples, nothing distracts
the reader from exactly what the module is doing.

Implicit methods are meant to make code more readable
rather than less. Their overuse can make code very difficult
to understand, however; moderation is required.

Only methods and exceptions can be found implicitly:
referring to a field always requires explicit syntax.

The remainder of this section describes the various mech-
anisms supporting implicit methods, specifically the implicit

method search algorithm and the using and notusing mod-
ule operators.

5.4.1 Implicit method search

Prolac allows implicit methods to be found in a module’s
supertypes. Therefore, this example will work:

module I {
implicit ::= ...;

}
module S has I using all { }
module M :> S {

... implicit ... // finds I.implicit
}

This is behavior is required for predictable programming.
Consider, for example, inheriting from a module in order to
extend it—not being able to refer to implicit names which
the parent module used would be very counterintuitive.The
following algorithm implements implicit method search, in-
cluding parents, without surprising behavior.

To find an implicit method named n in module M, a
breadth-first search is performed. First all of M’s imports
and fields are checked for a top-level method named n; then
M’s parent’s imports and fields; then M’s grandparent’s im-
ports and fields; and so on. The search continues backwards
in the module hierarchy until there are no more ancestors
or a definition is found.

A definition is found for n in some import or field iff:

1. That import or field has a module or pointer-to-module
type;

2. That module has a visible method, exception, or name-
space call (§9.2.1) named n; and

3. A ‘using n’ or ‘using all’ directive (§5.4.3) is in effect on
that module.

A warning is given if, at any point during the search, the
algorithm finds a field or a namespace that cannot be
called (§9.2.1) instead of a method or exception.

If two or more definitions for n are found in the same
generation of the search, the implicit method is ambiguous
and an error is reported. For example, if two of M’s fields
define n, n is ambiguous; but also, if M’s parent has two
fields f1 and f2 which both have an n method, then n is
ambiguous, and so on.

If a unique definition for n is found in any generation of
the search, that definition is used. It is an error (specifically,
an undefined variable error) if no definition is found.

There are some caveats. First, if the parent (grandparent,
etc.) is closed off to implicit method search by an explicit
‘notusing all’, neither that parent nor its supertypes are
searched.

10

Second, only static methods (§5.1) are considered in im-
ports, and only dynamic methods are considered in fields.
Thus, there is no ambiguity in this example:

module I {
dyn ::= ...;
static stat ::= ...;

}
module M has I using all {

field f :> I using all;
test ::=
dyn, // unambiguously f.dyn (I.dyn not considered)
stat; // unambiguously I.stat (f.stat not considered)

}

For purposes of implicit method search, exceptions are
treated like static methods.

5.4.2 Implicit method definitions

Once the compiler finds an unambiguous definition D for an
implicit method named n, it writes a forwarding definition
for n which simply calls D. The forwarding definition de-
pends on D: specifically, the new definition takes the same
number of parameters with the same respective types and
returns the same type as D.

If D was found in an import I, the definition will look like
this:

static n(parameters) ::= I.n(parameters);

If D was found in a field f, there are two possibilities, de-
pending on whether f has pointer-to-module type:

n(parameters) ::= f.n(parameters);
n(parameters) ::= f−>n(parameters);

5.4.3 ‘using’ module operator

The user controls implicit method search through the using
and notusing module operators. The using operator makes
a module’s names available for implicit method search. Its
left operand must be a module expression; its right operand
must be a list of simple names (qualified names can never
be implicit methods, anyway), or either ‘all’ or ‘allstatic’.

Here is a simple example:

module M {
static f ::= ...;

}
module U has M {

... f ... // error: ‘f’ undefined
}
module U2 has M using f {

... f ... // OK
}

‘using all’ makes all of a module’s top-level names available
for implicit method search, while ‘using allstatic’ makes all
of a module’s static top-level names available for implicit
method search.

Note that any field module types are actually references to
a module’s import list. This can lead to more using directives
than you want:

module U1 has M using all {
field m1 :> M;
field m2 :> M;

}
// is equivalent to...
module U2 has M using all {

field m1 :> M using all;
field m2 :> M using all;

}

Any reference to a dynamic implicit method from M will
result in an ambiguity between m1’s definition and m2’s. To
fix this situation, use notusing, or say ‘using allstatic’ in the
module header instead of ‘using all’.

5.4.4 ‘notusing’ module operator

The notusing operator hides a module’s names from implicit
method search. Its left operand must be a module expres-
sion; its right operand must be a list of simple names or ‘all’.
(You can’t say ‘notusing allstatic’.)

5.4.5 Notes

Once they are defined through the implicit method search
defined above, implicit methods are treated identically to
normal methods by the language. In particular, this means
that implicit methods can be overridden in a module’s sub-
types, although this will not normally happen because im-
plicit methods are hidden by default.

5.5 Export specifications

Prolac does not, by default, generate a C function defini-
tion for every method in the Prolac program; rather, export
specifications tell Prolac which methods to generate. Export
specifications are placed outside of any module in the Prolac
input file. Here is the syntax for an export specification:

export module.method [, module.method ...]

Module must be a module name (possibly preceded by
namespace qualifiers); method can be a method from that

11

module or ‘all’, which means “export all methods defined in
module”.

Prolac collects all export specifications and generates
code for the methods they mention in arbitrary order. It
then recursively generates code for all the methods they
call, the methods those methods call, and so on, until it
reaches closure.

6 Fields
Fields are module-specific variables. Like methods (§5.1),
fields can be static or dynamic; dynamic fields are like in-
stance variables or slots in other object-oriented languages,
while static fields are more like global variables. Each object
of a module type has its own copy of each of the module’s
dynamic fields, while only one copy exists of each of a mod-
ule’s static fields. Any field, static or dynamic, must be part
of some module.

Fields are declared with the following syntax:

[static] field name :> type;

Remember that, if type is a module type, it must be a vis-
ible supertype of the current module or it must have been
explicitly imported (§3.3).

A dynamic field can be referred to only in a dynamic
context (§9.6); in a dynamic method, ‘self.’ can be omitted
when referring to self’s dynamic fields. Unlike methods,
fields cannot be overridden and they cannot be found with
any kind of implicit search.3

7 Exceptions
Exceptions in Prolac signal conditions that cause normal
processing to terminate. Prolac exceptions have termination
semantics, like exceptions in C++ or Java; but unlike those
languages, a Prolac exception carries no information other
than its name. You declare an exception inside a module as
follows:

exception exception−name ;

Every exception declaration introduces a unique excep-
tion. Thus, two exceptions with the same name are distinct
if they were declared in different modules. There are no re-
strictions on where exceptions can be raised or caught—an
exception can be raised or caught wherever that exception

3. Implicit method search abbreviates something the user could do her-
self (write forwarding methods). However, the user cannot create a
“forwarding field”.

can be named. In particular, the module that raises an ex-
ception need not be a subtype of the module that declared
the exception.

7.1 Raising exceptions

You raise an exception simply by calling it, as if it were a
method taking no parameters:

module M {
exception invariant−failed;
f ::= !check−invariant ==> invariant−failed;

}

If check−invariant returns false, the invariant−failed excep-
tion will be raised and control transferred to the most re-
cently executed ‘catch invariant−failed’ or ‘catch all’. If there
was no such catch, the topmost Prolac method will return
with a negative value.

Only methods returning void or bool may raise an excep-
tion. Methods returning more complex types must use catch
expressions (§7.2) to handle any exceptions their bodies may
throw. The compiler checks this invariant. For example:

module M {
exception bad;
f1 ::= bad; // OK: f1 returns bool
f2 :> int ::= bad; // error
f3 :> int ::= (bad catch bad), 5;

// OK: the bad exception cannot escape f3
f4 :> int ::= (f1 ? 1 : 2);

// error: f1 can throw an exception f4 does not handle
}

Exceptions behave in expressions as if they had arbitrary
type, so they may be used in any context without causing a
type error.

7.2 Handling exceptions: ‘catch’

The ‘catch’ operator is used to catch one or more exceptions
within a subexpression. Its left operand is the subexpres-
sion; its right expression is an exception name, a comma-
separated list of exception names, or ‘all’, which catches all
exceptions. Some examples:

do−something catch X1
do−something, do−something−else catch (X1, X2, X3)
do−something−else−again catch all

An expression ‘A catch X’ has type bool. Its return value is
true if one of the exceptions X was raised but not caught
inside A; it is false otherwise.

12

The precedence of catch is very low on the left and very
high on the right (§9.1). This lets you write sequential ex-
ception handlers without using parentheses. These two ex-
pressions are equivalent:

A catch X1 ==> H1 ((((((A catch X1) ==> H1)
catch X2 ==> H2 ≡ catch X2) ==> H2)
catch all ==> H3 catch all) ==> H3)

Here, H1 is executed if the exception X1 is raised within
A; H2 is executed if X2 is raised within A or H1; and H3 is
executed if any exception gets through the other handlers.

8 Types
This section describes the Prolac type system, including
Prolac’s built-in types and their values and allowable con-
versions between types. Prolac supports void, boolean, and
arithmetic types, module types, and pointer and array types.
It does not support function or method types.

The type declaration operator ‘:>’ (§9.7) is used in Prolac
to declare the types of fields, parameters, methods, and
supertypes. We write ‘V :> T’ for “V has type T” or “V is a T”.

Types can occur in Prolac expressions only in casts and
to the right of ‘:>’ (§9.7). Module types can also appear
to the left of ‘.’ (member access, §9.6) and as constructor
calls (§9.2.2). It is an error if a type expression occurs inside
a value expression in another context.

8.1 Converting and casting

The two processes of conversion (or, equivalently, implicit
conversion) and casting convert a value from one type to
another. Casting is strictly more powerful than conversion.

Prolac automatically invokes implicit conversion in any
context where a value is expected to be of some type—for
example, the test argument to a choice operator ‘?:’ (§9.3.5)
is expected to have type bool. Integral values and pointer
values both implicitly convert to bool, as defined below,
so these values are also acceptable as test arguments. The
phrase “V is converted to T” means “V is implicitly converted
to T if this is possible; if not, an error is reported.”

Prolac never automatically casts a value; the user explic-
itly invokes a cast by using the type cast operator (§9.7).
Whenever a value V can be implicitly converted to a type
T, the explicit cast ‘(T)V’ is also possible and has the same
result.

8.2 Common types

Two types T1 and T2 always have a common type, which is
used when T1 and T2 are combined in an expression; for
example, the choice expression ‘test ? V1 : V2’, whose value
may be either V1 :> T1 or V2 :> T2, has the common type of

T1 and T2 as its type. Implicit conversions (never casts) are
used to convert each operand to the common type.

The common type for two types T1 and T2 is found as
follows:

1. If T1 and T2 are the same type T, the common type is
T.

2. If either T1 or T2 is bool and the other can be implicitly
converted to bool (i.e., it is bool or an integral or pointer
type), the common type is bool.

3. If both T1 and T2 are integral types, the common type
is the larger of them (see §8.5).

4. If both T1 and T2 are pointer types, then:

(a) If either T1 or T2 is *void, the common type is
*void.

(b) If T1 and T2 are pointers to module types M1
and M2, then if either module is an supertype
of the other, the pointer type to the supertype is
returned.

5. Otherwise, the common type is void.

8.3 void

The void type signifies the absence of any value. Any expres-
sion can be implicitly converted to void. A void expression
cannot be cast to any other type.

Because void implies the absence of a value, it is an error
to declare a value (object, parameter, field, etc.) of type void.
void is most useful as a method return type and as the base
for the generic pointer type *void.

8.4 bool

bool is the Boolean type. It has two values, true and false.
Integral values implicitly convert to bool, with 0 con-

verting to false and any non-zero value converting to true.
Pointer types also implicitly convert to bool: the null pointer
converts to false, any non-null pointer to true.

bool values may be explicitly cast to integral types; false
casts to 0 and true casts to 1.

8.5 Integral types

Prolac has nine integral types: four signed types, char, short,
int, and long; four unsigned types, uchar, ushort, uint,
and ulong; and one unsigned type with circular compari-
son (§9.10.4), seqint. Their properties are summarized in
this table; size is in bits:

13

Size Signed Unsigned Circular
8 char uchar

16 short ushort
32 int uint seqint
64 long ulong

The common type of two integral types is the larger of
the two types, as defined below.

• If either type is ulong, the common type is ulong.

• Otherwise, if either type is long, the common type is
long.

• Otherwise, if either type is seqint, the common type is
seqint.

• Otherwise, if either type is uint, the common type is
uint.

• Otherwise, the common type is int.

8.6 Module types

Each defined module M is a distinct type. Note that two
versions of the same module with different module oper-
ators (§3.4) do not define two different types; in terms of
type, M is equivalent to ‘M hide all inline x’.

If S is a supertype of M, a pointer of type *M may be
implicitly converted to a pointer of type *S (§8.7). However,
unlike most object-oriented languages, an object of type M
cannot be converted or cast to an object of type S: only
pointers exhibit true subtyping behavior.

8.7 Pointer types

If T is a type, then *T is also a type, representing a pointer to
a value of type T. (Note that Prolac differs syntactically from
C, where the ‘*’ operator attaches to the declared name, not
the type.)

As in C, *void is the generic pointer type: any pointer can
be implicitly converted to type *void, and an object of type
*void can be implicitly converted to any pointer type.

A pointer to a module M can be implicitly converted to
a pointer to a module S, where S is an supertype of M.
Furthermore, a pointer to S can be explicitly cast to type
*M.

The integer constant 0 can be implicitly converted to any
pointer type, resulting in a null pointer of the given type.
The semantics of such a null pointer are the same as in C.
Except for ‘0’ itself, integer constant expressions evaluating
to 0 are not acceptable null pointers.

8.8 Array types

If T is a type and k is a nonnegative static integer constant,
then ‘T[k]’ is also a type, representing an array of k T objects.
The array dimension k may be a symbolic constant (§9.2.3).

An object of type T[k] may be implicitly converted to a
pointer object of type *T.

9 Expressions
This section describes the Prolac operators. Prolac is an
expression-based language; unlike C, but like Lisp and ML,
Prolac has no concept of statement (a control structure
which is not an expression). This means that Prolac has even
more operators and precedence levels than C (which, some
might argue, already had too many); it also means that once
you understand the Prolac operators, you can understand
any computation expressed in Prolac.

Prolac operators fall into several categories. Method calls
are discussed first (§9.2), followed by control flow opera-
tors, which control Prolac’s order of computation. The let
operator (§9.4) and C blocks (§9.5) come next, followed by
member operators (§9.6), typing operators (§9.7), code mo-
tion operators (inline and outline, §9.8), and C operators,
whose meanings are the same in Prolac as in C (§9.10).

9.1 Operator precedence

Table 9.1, on page 15, lists all of Prolac’s operators and
their precedences. Some operators do not have precedence
as they textually contain all their subexpressions; these are
listed at the bottom of the table. Of course, grouping paren-
theses can be used to override any default precedence or
associativity.

9.2 Method calls

A method call expression ‘f(...)’ expresses the execution of
the specified method. Any actual parameters to the method
are given inside the parentheses, separated by commas; they
must match the method’s declared parameters in number
and type. The types need not match exactly: Prolac attempts
to convert the actual parameters to the types of the declared
parameters.

Calls to methods without parameters need not provide
parentheses. For example:

module M {
f ::= true;
g ::= f(), // call M.g

g; // also call M.g
}

14

Operators with precedence
23. e.n .n member §9.6

e−>n pointer to member §9.6
22. f(e1, e2, ...) method call §9.2

e1[e2] array reference
e++ e−− postincrement, postdecrement

21. (T)e type cast §9.7
20. module operators (§3.4):

M hide n M show n
M rename (n1=n2)

namespace control §4.6

M using n M notusing n implicit methods §5.4.3
M inline[k] n inlining §9.8.1
M noinline n M defaultinline n M pathinline n

19. e :> T type declaration §9.7
18. *e dereference

&e address of
+e −e unary plus/minus
~e bitwise not
!e logical not
++e −−e preincrement, predecrement
inline[k] e inlining §9.8.2
noinline e defaultinline e pathinline e

17. e1 * e2 e1 / e2 e1 % e2 multiply, divide, remainder
16. e1 + e2 e1 − e2 add, subtract
15. e1 << e2 e1 >> e2 left and right shift
14. e1 < e2 e1 > e2 arithmetic compare

e1 <= e2 e1 >= e2
13. e1 == e2 e1 != e2 equality tests
12. e1 & e2 bitwise and
11. e1 ^ e2 bitwise xor
10. e1 | e2 bitwise or

9. e1 && e2 logical and
8. e1 || e2 logical or
7. e1 ? e2 : e3 choice (r) §9.3.5
6. e1 = e2 e1 += e2 e1 −= e2 assignment and compound

e1 min= e2 e1 max= e2 assignment (r)
e1 *= e2 e1 /= e2 e1 %= e2 e1 <<= e2 e1 >>= e2
e1 &= e2 e1 ^= e2 e1 |= e2

5. outline[k] e outlining §9.8.3
4. e1, e2 comma §9.3.1

e1 {C} e2 C block §9.5
3. e1 ==> e2 arrow (r) §9.3.3
2. e1 ||| e2 case §9.3.7
1. e catch n handle exception §7.2

Operators without precedence
(e) grouping
if e1 then e2 else e3 end if-then-else §9.3.6
let decls in e end let §9.4
min(e1, e2) max(e1, e2) minimum, maximum §9.10.5

Table 9.1: Prolac operators and precedence levels. Oper-
ators higher in the table bind more tightly; (r) denotes
right-associative operators. If a reference is not given, the
operator is described in §9.10.

Note that raising an exception (§7) looks exactly like call-
ing a method with no parameters.

9.2.1 Namespace call

To facilitate the use of namespaces, a namespace name may
be treated as a method or exception call. If a namespace
originally named n4 is found within an expression where a
namespace was not expected, Prolac looks in that name-
space for a method or exception named n and uses that if it
is found. For example:

module M {
nest { nest ::= ...; }
f ::= nest.nest, // call M.nest.nest

nest; // also call M.nest.nest
}

The search is only performed one level deep. Thus, this is
an error:

module M {
nest { nest { nest ::= found−the−prize; } }
f ::= nest; // error:

// namespace ‘M.nest’ cannot be called
}

In a normal Prolac expression (that is, any expression
except supertype and import lists and operands to module
operators), namespaces are expected in only one context:
to the left of a direct member operator ‘.’ (§9.6). Thus, this
search is performed everywhere except to the left of ‘.’.

9.2.2 Constructor calls

Calls to a module’s constructor (§5.3) are used to initialize
an object of Prolac module type. There are several ways to
call constructors; some of them allocate stack memory to
hold the object, while some initialize externally allocated
memory.

It is an error to call a constructor in any manner when the
constructor has been hidden (§4.6.1). This allows a module
to suggest that no objects of that module type should be
created except through visible interface functions.5

Normal constructor calls. An expression ‘M(args)’
where M is a module is a normal constructor call. This ex-
pression allocates stack memory for an M object, initializes
that object by calling M’s constructor with args as arguments,
and returns the object.

4. That is, before any show or rename operations were applied.
5. The module’s user could always show the constructor.

15

Just as with method calls, the actual arguments to a con-
structor call must match the constructor’s declared param-
eters in number and type. Parentheses cannot be omitted
from a normal constructor call. That is, an expression like
‘M.f’ is always interpreted as a reference to a static feature
of M, rather than a constructor call like ‘M().f’. To force the
constructor interpretation, simply use parentheses.

Direct constructor calls. Externally allocated memory
can be initialized by calling its constructor directly, as if it
was a normal method. For example:

module M {
constructor(i :> int) ::= ...;
static new :> *M ::= let ptr :> *M in

{ ptr = malloc(sizeof(M)); }
ptr−>constructor(97), // direct constructor
ptr end;

}

Again, the number and types of arguments must match the
declared constructor.

Implicit constructor calls (‘let’). A let binding (§9.4)
without a value expression will call constructors implicitly
whenever the specified type is a module type. For example:

module M {
constructor(i :> int) ::= ...;
f ::= let m1 :> M // same as ‘m1 :> M = M()’:

// error: too few arguments to ‘M.constructor’
in let m2 :> M(5) // same as ‘m2 :> M = M(5)’: OK
in 0 end end;

}

9.2.3 Symbolic constants

Symbolic constants may be defined in Prolac by creating a
static method whose body evaluates to a constant:

module M {
static six :> int ::= 6;
static thirty−two :> int ::= 1 << (six − 1);

}

The Prolac compiler will inline calls to such methods by
default.

Calls to static constant methods are allowed in Prolac
wherever a constant integer is expected—in the optional ar-
gument to inline, for example. An explicit noinline operator
will prevent a static constant method from being usable as
a Prolac constant (§9.8.1). If a static constant method with-
out parameters is called inside a C block (§9.5), its constant
value is used instead.

9.3 Control flow operators

Control flow operators are semistrict: they do not always
evaluate all of their operands. Different control flow oper-
ators express sequencing, choice or if-then-else semantics,
conjunction, disjunction, conditional execution, and case
statements.

9.3.1 Comma: ‘,’

The comma operator ‘,’ expresses sequencing: an expression
‘A, B’ first evaluates A, then throws the result away and
returns the result of B.

A and B can each have any type. The expression’s type is
the type of B.

9.3.2 Logical and: ‘&&’

The logical and operator ‘&&’ expresses conjunction: an
expression ‘A && B’ evaluates to true iff both A and B are
true. A is evaluated first; if it is false, the whole expression
must be false, and B is not evaluated at all.

Both A and B are converted to bool. The expression also
has type bool.

9.3.3 Arrow: ‘==>’

The arrow operator ‘==>’ expresses conditional execution.
An expression ‘A ==> B’ evaluates to true iff A is true—but
in that case, B is evaluated before the expression returns.

A is converted to bool, but B can have any type. The
expression has type bool (but see below §9.3.7).

The expression ‘A ==> B’ is exactly equivalent to ‘A &&
(B, true)’, except for its behavior within case bars (§9.3.7).
The arrow operator is useful for building “case state-
ments”; for example, this code will evaluate else−case only
if condition−1 and condition−2 are both false:

(condition−1 ==> case−1)
|| (condition−2 ==> case−2)
|| else−case

At most one of case−1, case−2, and else−case will be exe-
cuted.

Case statements that return non-bool values can be built
from arrow operators and case bars (§9.3.7).

9.3.4 Logical or: ‘||’

The logical or operator ‘||’ expresses disjunction: an expres-
sion ‘A || B’ evaluates to true iff either A is true, B is true, or
both. A is evaluated first; if it is true, the whole expression
must be true, and B is not evaluated at all.

Both A and B are converted to bool. The expression also
has type bool.

16

‘A || B’ is also legal if B has type void. In this case, ‘A ||
B’ has type void, and is shorthand for ‘A ? (void)0 : B’. Prolac
never tries to convert B to void—this definition is only used
if B’s type is void without conversion.

9.3.5 Choice: ‘?:’

The question mark–colon operator ‘?:’—also called the
choice operator—expresses choice. An expression ‘A ? B :
C’ first evaluates A. If A is true, it returns B (without evalu-
ating C); otherwise, it returns C (without evaluating B).

A is converted to bool; the type of the expression is the
common type of B and C.

9.3.6 ‘if-then-else’

The if-then-else operator is another way to express choice.
The full syntax for if-then-else is as follows:

if condition
then case−1
[elseif condition−2 then case−2]...
[else else−case]
end

This expression is a synonym for:

condition ? case−1
[: condition−2 ? case−2]...
: else−case

The type of the if-then-else expression is the common
type of all cases. The else−case can be omitted, forming an
if-then expression; if it is omitted, the type of the expression
is void.

‘if−then−else’ is provided primarily as an alternative to ‘?:’
for larger expressions—the ‘?:’ syntax becomes difficult to
read very quickly when its operands are large.

9.3.7 Case bars: ‘|||’

The case bar operator ‘|||’, in conjunction with the arrow
operator (§9.3.3), expresses a case statement returning a
meaningful value.

A case statement has this general form:

condition−1 ==> consequent−1
||| condition−2 ==> consequent−2 ...
||| else−case

Exactly one of the consequents or else−case is executed, de-
pending on which, if any, condition is true. The result of
that consequent or else−case is returned as the value of the
expression.

The case statement’s syntax is based on matching con-
structs from functional programming languages; here, how-
ever, the conditions are all converted to bool. The case state-
ment is exactly analogous to Lisp’s cond special form.

Case bars are actually syntactic sugar for choice opera-
tors (§9.3.5). Given an expression containing ‘|||’, the com-
piler repeatedly applies the following transformations until
no ‘|||’s remain:

1. A ==> B ||| X ⇒ A ? B : X
2. (A ? B : C) ||| X ⇒ A ? B : (C ||| X)
3. (A, B) ||| X ⇒ A, (B ||| X)
4. A ||| X ⇒ A || X

Note that ‘|||’s used outside the context of a case statement
reduce to normal logical ors, ‘||’ (§9.3.4).

Here is a demonstration of the transformation rules:

A ==> B ||| C ==> D ||| E
⇒ (A ==> B ||| C ==> D) ||| E // left-associative
⇒ (A ? B : (C ==> D)) ||| E // rule 1
⇒ A ? B : ((C ==> D) ||| E) // rule 2
⇒ A ? B : (C ? D : E) // rule 1

The type of the whole expression is therefore the common
type of B, D, and E.

A case statement without a final else−case usually has type
bool. To see why, consider this expansion:

A ==> B ||| C ==> D
⇒ A ? B : (C ==> D) // rule 1

Since there are no case bars remaining, expansion is over.
The type of the expression is then the common type of B
and ‘C ==> D’; but the type of ‘C ==> D’ is just bool, so B will
be converted to bool if possible.

9.4 ‘let’

The let operator, like the let operator in many functional
languages, introduces new statically-bound variables within
a subexpression. The syntax of let is as follows:

let variable [:> type] [= value]
[, variable [:> type] [= value] ...]

in body end

Variable is just an identifier. Type is a type expression and
value is a value expression; either type or value may be omit-
ted, but not both. If value is omitted, variable is constructed
implicitly if it has module type (§9.2.2), or left uninitialized
otherwise; if type is omitted, variable’s type is the type of the
value expression. If neither is omitted, the value expression
is converted to type type. It is an error if value cannot be
converted to type.

17

To evaluate a let expression, Prolac first evaluates the
value expressions and any necessary type constructors in an
arbitrary order. The resulting values are then bound to the
variables. Finally, body is evaluated with these bindings in
force. The value of the let expression is the value of body;
the type of the let expression is the type of body. Note that
a let expression’s variables are not visible to any of its type
or value expressions.

9.5 C blocks: ‘{...}’

A C block ‘{...}’ is used to execute C code at a given point
during the execution of a method. The type of a C block is
bool and its value is always true.

C blocks are special syntactically: a C block acts like a Pro-
lac value—specifically, ‘true’—with implicit comma opera-
tors on either side. Some examples will make things clearer;
the implicit true is shown when necessary.

{A} ≡ {A}, true
{B} X ≡ {B}, X
X {C} ≡ X, {C}, true
X {D} Y ≡ X, {D}, Y
X ==> {E} ≡ X ==> ({E}, true)
X ==> Y {F} ≡ X ==> (Y, {F}, true)
X = Y {G} Z ≡ (X = Y), {G}, Z
X ? Y : Z {H} ≡ (X ? Y : Z), {H}, true

Some Prolac names can be used in a C block to refer to
the C equivalents of those Prolac objects. Specifically, the
following objects are available under their Prolac names:

1. In a dynamic method, self.

2. In a dynamic method, any of self’s fields or fields of its
ancestors.

3. Any static fields of self, its ancestors, or its imports.

4. Parameters from the current method.

5. Variables bound by surrounding let expressions (§9.4).

6. Static constant methods without parameters (§9.2.3).

This list does not include arbitrary Prolac methods: you
cannot call most Prolac methods from C blocks using Prolac
syntax.

Unlike Prolac, C does not allow hyphens in identi-
fiers (§2.1). Prolac follows C’s rules while parsing C blocks;
thus, this C block will not work as expected:6

let thing−1 = 0 in { return thing−1; } end

6. Or maybe it is the Prolac code that does not work as expected.

To refer to an object with a hyphen in its name, simply
change the hyphen to an underscore:

let thing−1 = 0 in { return thing 1; } end

Objects of type seqint are treated as unsigned integers
inside C blocks. In particular, comparisons like ‘seq1 < seq2’
are unsigned, not circular (§9.10.4).

9.6 Member operators: ‘.’ and ‘−>’

The member operators ‘.’ and ‘−>’ express finding a feature
in a namespace or object. The right operand of a mem-
ber operator must be an identifier. The pointer-to-member
operator ‘−>’ is used on pointer types (§8.7); the expression
‘A−>x’ is exactly equivalent to ‘(*A).x’. The rest of this section
discusses only the direct-member operator, ‘.’.

The left-hand operand, or “object operand”, of a member
expression must be a namespace or have a module type. The
object operand may be either a type or value expression. If
it is a type expression, the member has static context; if it is
a value expression, it has dynamic context. It is an error to
refer to a static feature in a dynamic context, or a dynamic
feature in a static context. To illustrate:

module M {
field d :> int;
static s ::= 0;

}
module N has M {

field m−object :> M;
test ::=
M.s, // OK: static context, static method
m−object.d, // OK: dynamic context, dynamic field
M.d, // error: static context, dynamic field
m−object.s; // error: dynamic context, static method

}

Fields, parameters, and objects always have dynamic con-
text, while Imports always have static context. Supertypes
are a special case: In a static method, supertypes have static
context. In a dynamic method, supertypes have dynamic
context; however, in this case and this case only, you may re-
fer to a supertype’s static feature, even though the supertype
has dynamic context.

The direct member operator ‘.’ also has a prefix version
‘.x’, used to look up names in the global namespace (§4.3).

9.7 Type operators: ‘:>’ and ‘(cast)’

The type declaration operator ‘:>’ is used elsewhere in Pro-
lac to declare the types of objects; inside a value expression,
‘:>’ expresses a type assertion. The right operand of ‘:>’

18

should be a type expression, T. The value of an expression
‘V :> T’ is the value of V converted (§8.1) to type T. Note
that the ‘:>’ operator will only use implicit conversions on
V; an error is given if V cannot be implicitly converted to T.
Thus, ‘:>’ can be used to guarantee that V has type T without
invoking a possibly dangerous type cast.

The type casting operator ‘(type)’ is used to change the
type of its value operand. The value of an expression ‘(T)V’,
where T is a type expression, is the value of V cast (§8.1) to
type T.

9.8 Code motion operators

Prolac provides two operators to control optimization and
code motion, inline and outline. inline is also available as a
module operator.

9.8.1 ‘inline’ module operator

The inline module operator controls how a module’s meth-
ods are inlined. Its left operand must be a module expres-
sion; its right operand must be a list whose elements are
one of the following kinds of expressions:

1. A simple method name, or the name of a namespace
that can be called (§9.2.1); the corresponding method
will be affected.

2. ‘NS.all’, where NS is a namespace; all methods defined
in NS or any of its nested namespaces will be affected.

3. ‘M.all’, where M is a supertype of the module expres-
sion; all methods defined by M (specifically, whose ac-
tual is M; see §5) will be affected.

4. ‘all’; all methods will be affected.

In addition, inline can take an optional inline level ar-
gument, which must appear in brackets directly after the
inline keyword. An inline level must evaluate to an integer
constant whose value is between 0 and 3. 0 means “do not
inline under any circumstances”, 1 means “do not inline”,
2 means “inline”, and 3 means “path inline” (described be-
low). If no argument is given, the inline level defaults to
2.

When a method call expression (§9.2) is evaluated, Prolac
checks the corresponding module for that method’s inline
level; if it is high enough and the method call is unambiguous
(i.e., no dynamic dispatch is possible), the method call will
be inlined. For example:

module M {
method ::= ...;

}
module N has M {

test(r1 :> M, r2 :> M inline all) ::=

r1.method, // not inlined
r2.method; // inlined

}

A method call labeled with inline level 3 is path inlined:
any methods called by the first method are inlined as well.
For example:

module M {
a ::= { XXX; };
b ::= a;
d ::= inline[3] b;
// generates code like ‘d ::= { XXX; };’
// rather than ‘d ::= a;’

}

This recursive inlining can be stopped by inline[0]. Re-
cursive or mutually recursive methods are currently inlined
only one level deep, except for tail recursive methods, which
are inlined into loops.

The operators noinline, defaultinline and pathinline are
equivalent to inline[0], inline[1] and inline[3], respectively.

9.8.2 Expression ‘inline’

Expression inline is a prefix unary operator appearing in
method bodies (the inline module operator is a binary oper-
ator appearing in module expressions). Like the inline mod-
ule operator, expression inline can take an optional inline
level argument in brackets, and the noinline, defaultinline,
and pathinline module operators have expression equiva-
lents.

An expression ‘inline[n] X’ simply evaluates X and returns
its value; the type of ‘inline[n] X’ is the type of X. However,
any method calls within X are inlined with inline level n.
Expression inline overrides any inline module operators.

9.8.3 ‘outline’

The prefix unary operator outline appears in method bodies
and controls code outlining, the removal of infrequently-
executed code from a computation’s critical path. The out-
line operator tells the compiler that the current branch of
control flow is relatively unlikely; the compiler will move
that branch to the end of the function body in the code it
generates. This tends to improve i-cache utilization.

Like the inline operators, outline it takes an optional static
integer constant argument which must be between 0 and
10. Here, 0 means “never outline”, while 10 means “outline
as far as possible”; or, equivalently, 0 means “this is the most
common branch” and 10 means “this is the least common
branch”.

An expression ‘outline[n] X’ evaluates X and returns its
value; its type is the type of X.

19

The outline operator is only meaningful on the destina-
tion of a code branch, such as to the right of ‘&&’, ‘||’, or
‘==>’, or on either consequent of a choice operator (§9.3.5,
§9.3.6, §9.3.7). To see why, consider the expression ‘A +
(outline B)’. This expression suggests that B is less likely to
be executed than A; but this is impossible, since (unless A
generates an exception) B will be executed whenever A is.
Prolac does not warn on such expressions; rather, it floats the
outline into the expression until it finds a control flow oper-
ator, and attaches the outline onto that operator’s rightmost
operand. Thus, these pairs of expressions are equivalent:

A + (outline B ? C : D) ≡ A + (B ? C : (outline D))
outline A || B ≡ A || (outline B)

9.9 Lvalues

Some expressions are lvalues, meaning that they can ap-
pear on the left side of an assignment expression. Only the
following expressions are lvalues:

1. Field (§6), parameter, or let-bound variable (§9.4) ref-
erences;

2. Dereferences ‘*X’, where X is an object of pointer
type (§9.10.1);

3. ‘(X)’, where X is an lvalue.

9.10 C operators

This section describes the remaining operators, whose def-
initions are generally borrowed from C.

9.10.1 Dereference: unary ‘*’

The unary star or dereference operator ‘*’ acts differently
depending on whether its operand X is a type or value ex-
pression.

If X is a value expression, then it must have some pointer
type *T, but not *void. The expression ‘*X’ then has type T;
its value is the value of the object to which X points.

If X is a type expression, then ‘*X’ is also a type expression
defining the type “pointer to X” (§8.7).

9.10.2 Address of: unary ‘&’

The operand in an address expression ‘&X’ must be an
lvalue (§9.9). The value of the expression is a pointer to
X; it has type ‘*T’, where T is the type of X.

9.10.3 Equality tests: ‘==’, ‘!=’

Any two non-module values may be compared for equality.
In an expression ‘X == Y’, X and Y are both converted to their
common type (§8.2), which must not be void; as a special

case, any pointer can be compared with the integer constant
0, which is converted to a null pointer. The result has type
bool, and is true iff X and Y are equal.

The expression ‘X != Y’ is a synonym for ‘!(X == Y)’.

9.10.4 Arithmetic compare: ‘<’, ‘<=’, ‘>’, ‘>=’

The operands to an arithmetic compare operation are con-
verted to their common type, which must be an integral
or pointer type. Any integer value can be compared to any
other, and two pointers of the same type can be compared.
As a special case, any pointer can be compared with the in-
teger constant 0, which is converted to a null pointer (§8.7).
An arithmetic compare expression has type bool.

If the common type is seqint, a circular comparison is
performed modulo 232. The circular comparison operators
are defined as follows:

seq1 < seq2 ≡ (int)(seq1 − seq2) < 0
seq1 <= seq2 ≡ (int)(seq1 − seq2) <= 0
seq1 > seq2 ≡ (int)(seq1 − seq2) > 0
seq1 >= seq2 ≡ (int)(seq1 − seq2) >= 0

This definition corresponds to comparison on TCP se-
quence numbers.

9.10.5 Minimum and maximum

The minimum and maximum operators are defined as fol-
lows, except that complex subexpressions will be evaluated
exactly once.

min(X, Y) ≡ X < Y ? X : Y
max(X, Y) ≡ X > Y ? X : Y
X min= Y ≡ X = min(X, Y)
X max= Y ≡ X = max(X, Y)

‘min’ and ‘max’ use circular comparison on seqints.

9.10.6 Logical not: ‘!’

The operand to a logical not expression ‘!X’ is converted to
bool; the expression has type bool. If the value of X is true,
the expression has value false, and vice versa.

9.10.7 Arithmetic operators

The binary arithmetic operators are addition ‘+’, subtraction
‘−’, multiplication ‘*’, division ‘/’, remainder ‘%’, left ‘<<’ and
right ‘>>’ shift, bitwise and ‘&’, bitwise or ‘|’, and bitwise
exclusive or ‘^’. The unary arithmetic operators are unary
plus ‘+’ and minus ‘−’ and bitwise not ‘~’.

The operands to most arithmetic operators must have
integral type. The type of a unary arithmetic expression
is the type of its operand; the type of a binary arithmetic
expression is the common type of its operands.

20

Binary addition and subtraction also support some com-
binations of pointer operands. In an addition expression
‘A + B’:

• Either A or B may be a pointer; the other must have
integral type. The result has the type of the pointer
operand.

In a subtraction expression ‘A − B’:

• A and B may be pointers of the same type. The result
has type int.

• A may have pointer type and B may have integral type.
The result’s type is the type of A.

All arithmetic operators behave as they do in C.

9.10.8 Array reference: ‘[]’

The bracket operator ‘[]’ expresses array reference. The
expression ‘X[Y]’ acts differently depending on whether the
left operand X is a type or value expression.

If X is a value expression, then it must have some pointer
or array type *T, but not *void. The right operand Y must
have some arithmetic type, and the type of the whole ex-
pression is T. The expression behaves similar to the similar
array reference in C.

If X is a type expression, then Y must evaluate to a nonneg-
ative static integer constant. If so, ‘X[Y]’ is a type expression
defining the type “array of Y Xs” (§8.8).

9.10.9 Assignment: ‘=’

The assignment operator ‘=’ expresses variable assignment.
In an expression ‘X = Y’, X must be an lvalue (§9.9); Y is
converted to the type of X. The expression has the type of X;
its value is the value of X after the assignment is performed.

9.10.10 Compound assignment

A compound assignment expression ‘X @= Y’, where @ is a
binary arithmetic operator (§9.10.7), is exactly equivalent
to the expression ‘X = X @ Y’ except that X is evaluated only
once.

9.10.11 Increment and decrement: ‘++’, ‘−−’

The increment and decrement operators ‘++’ and ‘−−’ are
used to increment or decrement an lvalue by 1. Their
operand must be an lvalue with arithmetic or pointer type;
the result of the expression has the same type. The follow-
ing table shows equivalent expressions for each increment
and decrement operator, except that postfix increment and
decrement evaluate their operand only once.

++X ≡ X += 1
−−X ≡ X −= 1
X++ ≡ let temp = X in X += 1, temp end
X−− ≡ let temp = X in X −= 1, temp end

21

