
A Braitenberg vehicle simulator with pseudo-physics
late project — Embodied Intelligence

Eddie Kohler∗

This paper describes a Braitenberg vehicle simulator called xbraitenberg. The simulator can implement

arbitrary Braitenberg vehicles in a configurable, pseudo-physical world.

1 Braitenberg vehicles

Valentino Braitenberg introduced his vehicles in a little book published by the MIT Press in 1984 [1]. He

describes these vehicles as thought experiments, the result of a “process of purification” that occurred as he

considered the problem of mind. From a collection of simple parts—motors, sensors, and some wired-up

logic—he creates phenomena that observers would identify as intelligence, and makes a clear case that

intelligence is an observed condition, not an innate one.

Braitenberg situates his vehicles in an in-between world, half physical and half simulation. He relies

on friction, for example, but introduces wires (Mnemotrix and Ergotrix) that have no analogue in the real

world. The first vehicles he builds “conjure up images of vehicles swimming around in the water, while

later what comes to mind are little carts moving on hard surfaces” [1, page 2]; yet these are only images, for

the thought experiment does not require perfect correspondence with reality.

This makes Braitenberg vehicles perfectly suited for computer simulations. Modeling the real world in

a computer simulation is impossible, but Braitenberg’s vehicles live in a simpler space—one that Braitenberg

controls, or that we control. We can add analogues of physical laws and properties as we like, until the

simulation becomes too slow or the world is interesting enough to satisfy us.

Several Braitenberg vehicle simulators are already available on the Web. However, these simulators

involve very simple worlds. They often don’t bother modelling anything but the most simple physical

properties. They all model the inverse-square dissipation of light energy, but few of them even model

acceleration—vehicle motor output is directly proportional to vehicle velocity. Mark Ziler’s Shockwave

simulator [8] models one vehicle in a world with four lights; there is no friction and no acceleration. Chris

Gerken’s Java simulator [3] models many vehicles, but in a similar world (no friction, no acceleration, no

collisions between vehicles). John Wiseman’s simulator [7] is written in Lisp; while the code is not available,

from his demonstrations, it seems that the same constraints apply (no friction, acceleration, or collisions).

They also seem to apply to Torsten Will’s Java simulator [6], Chris Thornton’s POPBUGS simulator [5],

and Robin Edwards’s C simulator [2], although I couldn’t get Edwards’s simulator to run. These simulators

differ in implementation language, the number of vehicles they support, the kinds of sensors the vehicles

can have, and the way the vehicles’ brains are built, but not in the complexity of the world—although

Braitenberg himself writes early in his book that friction, among other real-world physical properties,

should have a role in his vehicles’ construction [1, page 19].

∗This paper was originally written in spring 2000 for Rodney Brooks’s 6.836 class at MIT.

1

This paper presents a simulator that models friction, acceleration, and collisions, as well as dissipation

of light and other physical properties. Xbraitenberg’s vehicles are swimming around on an infinite body

of water. They can have an arbitrary number of sensors and motors, pointed in arbitrary directions, and

arbitrary logic connecting them. They can have headlights. When two vehicles collide, they bounce off one

another like billiard balls. The world’s friction and angular friction constants are under user control.

Of course, simulating the real world is an impossible task, and xbraitenberg does not correctly model

many physical properties. For example, there are no waves or wakes in the “water”, there is no air resistance,

collisions between vehicles are elastic, vehicles cannot be broken, sensors have a uniform sensing profile,

and motors can fire arbitrarily fast (although the user can control this). Nevertheless, it implements enough

real behavior that the vehicles feel appreciably more real than the simulators mentioned above; and

furthermore, we can investigate how the world’s parameters change the ways vehicles behave.

2 Program overview

Xbraitenberg runs on Unix under the X Window System. A version of it was written for the first problem

set in 1999; this year, a later version was downloaded and used by many students for the first problem set.

Xbraitenberg creates an X window that displays the vehicles and any other objects in the world. Figure 1

shows a sample xbraitenberg screenshot. The screen displays two lights (the two standalone circles) and

six vehicles. (Two of the eight original vehicles have already left the screen.) The line behind each vehicle

is its trail, which shows where the vehicle has been.

The user can use keystrokes to pan through the world; to zoom in and out; to pause or resume motion;

to start the simulation again with the vehicles in different, random positions and orientations; to toggle

the display of trails; and to output the current display as an Encapsulated PostScript file. The right half of

Figure 1 shows such a PostScript file. These displays, rather than screenshots, are used for the remainder

of this paper.

The user can control the contents of the world with command line options and by hacking the code.

Unfortunately, interactive world manipulation is not supported—there are no dialog boxes, and the vehicles

and other objects cannot be clicked or dragged. Through the command line, the user can select vehicles

from a number of types, determine whether they should have headlights, set up other fixed objects such

as lights, set the vehicles’ motor logic, and set characteristics of the world like friction coefficients, among

other things. More detailed changes, such as adding motors or sensors to a vehicle or creating new fixed

lights, must be done in source code.

The source code itself consists of around 7000 lines of C++. (Several thousand of these are from

reusable libraries.) It roughly falls into four categories: graphic display, command line parsing and world

creation, code for the objects that populate the world, and code for managing the world generally.

3 Vehicle basics and display

The most important objects in any Braitenberg vehicles system are the vehicles themselves. This section

describes the vehicles’ parts and shows how they are displayed.

Each vehicle has a chassis, an arbitrary number of motors, an arbitrary number of sensors, logic

connecting the motors and sensors, and finally, optional attachments. In terms of the simulation’s physics,

the chassis is circular, but it is displayed as a box (see Figure 2). The motors are shown as smaller boxes

2

Figure 1: A sample xbraitenberg run with four Vehicles 2a, four Vehicles 2b, and two lights. Two of the

Vehicles 2a, which are light avoiders, have already left the screen. A color screen display is on the left; the

Encapsulated PostScript file generated for that screen display is on the right. (The actual screen display has

a black background.)

Figure 2: Vehicles 2a and 2b

3

Figure 3: Vehicles with and without headlights, and with and without angle-limited sensors. Also, one

instance of Braitenberg’s Vehicle 1.

hanging off the chassis; the sensors are shown as circle sections; and the logic is shown as wires connecting

motors and sensors. Xbraitenberg implements one important kind of optional attachment, a headlight,

which is shown as some grey circles centered on the chassis.

The sensors detect light. (The system can be extended to any kind of sensation. We have built sensors

that detect heat, such as heat generated from vehicle motors, but we only present light detection here.)

Sensors can optionally have a limited angular range—that is, they can ignore signals that are not coming from

some “pie slice” in front of the sensor. Limited sensors are shown as arcs, rather than complete circles, where

the arc’s extent shows the range the sensor can see. (See Figure 3 for some examples.) Sensors have uniform

responsiveness along their angular range and zero responsiveness outside it, rather than, say, tapering off

near the range’s borders.

Each motor’s response is controlled by a logical expression, often involving sensor values. The

sensor have names; on most vehicles, the sensors are called “left” and “right”. The user can sup-

ply their own logical expressions written in a C-like language. For instance, the command line option

“-left-logic ’left + 0.5*right’” says that the left motor’s response should be proportional to

both sensors, but the left one has priority. Braitenberg’s Vehicles 2a through 3b correspond to the following

logics:

Left logic Right logic

Vehicle 2a (sensation excites) pin(left) pin(right)

Vehicle 2b (sensation excites) pin(right) pin(left)

Vehicle 3a (sensation inhibits) .3*(1-pin(left)) .3*(1-pin(right))

Vehicle 3b (sensation inhibits) .3*(1-pin(right)) .3*(1-pin(left))

4

(The pin function pins its argument between 0 and 1.) For each motor, lines are drawn between that motor

and all sensors mentioned in its logical expression. This gives some visual feedback about how the vehicle

is programmed, and corresponds to the diagrams in Braitenberg’s book.

4 Vehicle physics

Xbraitenberg’s vehicles act like water skippers or hovercraft, or hockey pucks on an infinite field of ice.

Specifically, the vehicles’ contact with the ground is uniform—there are no wheels, for example—and they

are uniformly able to move in any direction. They have a mass, which is constant for all vehicles described

in this paper. They both move and spin; that is, they have both velocity and angular velocity. Physically,

they behave like circular masses of uniform density, although they are displayed as complex rectangular

devices.

A vehicle’s motors give it acceleration and angular acceleration (rather than directly setting its velocity).

Each motor fires linearly in a single direction, like a jet engine, and has some offset and rotation relative

to the center of the vehicle’s body. The motor’s firing applies both force and torque to the vehicle. The

force’s direction depends on the motor’s rotation; the amount of torque depends on the motor’s position

and rotation.

The motion of each vehicle is hindered by friction. The world has four friction constants: static

friction, dynamic friction, and two “angular friction” constants. The static and dynamic friction constants

are classical physics approximations. The static friction constant determines how much force must be

applied before the vehicle starts moving at all; the dynamic friction constant determines the strength of

the friction force, which acts against the vehicle’s motion. The two angular friction constants approximate

the same functions, but for the vehicle’s angular motion instead of its translation motion. They have no

classical physics analogues. You might think the proper thing to do would be to integrate the normal friction

on every point of the vehicle’s underside. However, static and dynamic friction constants are empirical

approximations anyway; angular friction is just another approximation, and not necessarily a worse one.

While not sanctioned by elementary physics textbooks, this was recommended by a real live physics

Ph.D. [4]

The friction experienced by the vehicle is independent of how fast it is moving. This is correct

physically. (In the real world, there are oppositional forces that are larger the faster a vehicle moves—

namely, air resistance—but xbraitenberg does not model any of these yet.) However, the angular friction

“force” has a component that is proportional to angular velocity. We initially left these independent, but

it did not dampen the angular velocity enough—vehicles always ended up spinning in place like mad

dervishes.

The vehicle’s acceleration equals the total force on the vehicle—obtained by summing the force vectors

for each motor and the friction force—divided by its mass. The vehicle’s angular acceleration is calculated

based on its torque, the angular friction, and its moment of inertia. The actual calculation is shown in

Appendix A.

Vehicle collisions are elastic: a simple, billiard-ball-like model. When two vehicles collide, momentum

and kinetic energy are both conserved, and the vehicles themselves are not damaged. Furthermore, collisions

do not currently affect angular velocity—even a glancing blow won’t change a vehicle’s orientation. Despite

these limitations, collisions give the simulation an interesting, dangerous feel. Figure 4 shows a small trace

with collisions.

5

Figure 4: Two Vehicles 2b with headlights. Since Vehicle 2b is a light seeker, these head towards one another

and collide. There have been two collisions; they show up as sharp changes in direction in the trails. These

vehicles will continue to collide indefinitely.

5 Other objects

Xbraitenberg supports lights as well as vehicles. Lights currently come in three varieties: fixed, timed, and

threshold. A fixed light always generates a fixed amount of radiation. A threshold light turns on only when

some amount of light is already in the vicinity. A timed light begins as on, but gradually shuts off over a

short period of time. (For example, this might act as an initial stimulus to excite any threshold lights.) Any

of these can be attached to vehicles as headlights.

6 Vehicle or world?

This section contains a preliminary investigation of how vehicle behavior can change when the physics of

the world changes, as opposed to the wiring of the vehicle itself. The first example we choose is from the

Braitenberg vehicle problem set—specifically, the problem of making a vehicle go back and forth between

two lights.

Figure 5 shows one back-and-forth vehicle at work. The vehicle’s sensors are angularly limited—they

can only see in front of them. Its motor-response curves are shown in Figure 6. The effect of the two curves

is as follows: When total sensor input is low, the vehicle heads for the nearest light. However, when it gets

reasonably close to the light, the vehicle shuts off. It drifts onward, slowing down because of friction, until

it comes close enough to the light that the right motor switches back on; at that point, the vehicle quickly

flips 180 degrees, away from the nearest light. It then, hopefully, is facing another light, and will head slowly

for that.

This solution pretty much works; if the vehicle starts between two lights, it will go back and forth as

desired. However, its behavior is quite fragile in terms of the world’s friction constants. Figure 5 is shown with

the default translation friction constants (ks = kd = 0.2) and second angular friction constant (κ2 = 1),

but a lower-than-usual first angular friction constant (κ1 = 0.1, not 0.3). The somewhat complicated

solution will only work when angular responsiveness is high, so that the vehicle can execute the 180-degree

6

Figure 5: The back-and-forth vehicle at work.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Le
ft

m
ot

or

Right sensor

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

R
ig

ht
 m

ot
or

Left sensor

Figure 6: Left and right motor logic for the back-and-forth vehicle.

flip quickly.

What if we raise the angular friction? Figure 7 shows the same vehicle in a world with normal angular

friction (0.3), and Figure 8 shows it in a world with ten times higher angular friction. As angular friction

increases, the vehicle grows slack and cannot turn in time to execute its planned behavior. With angular

friction lower than 0.1, the problem is different. If placed exactly between the lights, the vehicle still goes

back and forth between them. However, if placed near a light, the vehicle is much more unstable now—the

turning action can whip the vehicle around so fast that it overshoots 180 degrees; then the left sensor can

see the light again, which causes another turning action. The result is that the vehicle wanders off while

constantly spinning, until it gets out of range. The trace in Figure 9 demonstrates this. You can’t really see

the spinning action, but you can see how the vehicle circumnavigates the light sources. This is qualitatively

different behavior than the same vehicle with angular friction 0.1: when that vehicle gets pointed away from

the light sources, angular friction is hard enough to overcome that the vehicle tends to just stop.

Collisions also affect how the observer perceives the Braitenberg vehicles’ intentions. In a version of

the simulator without collisions, placing Vehicle 2a and Vehicle 2b together, each with a headlight, exhibits

a predator-prey relationship. Vehicle 2b runs after Vehicle 2a, catches up to it, and runs it over; Vehicle 2b

then passes onwards while Vehicle 2a acts broken (it slows down and changes direction). When collisions

are enabled, however, the relationship is different. Vehicle 2b still runs for Vehicle 2a, but instead of

“running it over”, it runs into its rear. The elastic collision then gives Vehicle 2a some forward momentum,

so it goes faster; but Vehicle 2b will catch up with it again and repeat the process. The two vehicles proceed

onwards in an accelerating straight line. It’s as if Vehicle 2b is goading Vehicle 2a into some action that

Vehicle 2a doesn’t really want to take—call it Macbeth and Lady Macbeth.

7

Figure 7: The back-and-forth vehicle with angular friction = 0.3.

Figure 8: The back-and-forth vehicle with angular friction = 1.

8

Figure 9: The back-and-forth vehicle with angular friction = .01.

7 Conclusion

Braitenberg vehicles are not pure thought experiments; they, too, are embedded in an environment that

affects their behavior. A simple vehicle that has specialized its behavior for one environment—say, the

back-and-forth vehicle, which was specialized for low angular friction—can have completely different

behavior in another environment. A Braitenberg vehicle simulator that models physics, even partially,

offers a richer and stranger world than a simple, physicsless model. It’s a world that’s fun to play with.

Xbraitenberg is available on the Web at the following address:

http://www.lcdf.org/~eddietwo/xbraitenberg/

A Vehicle motion calculation

We assume the vehicle’s center of mass is at (0, 0) and that the vehicle is moving along the positive x-axis

(so its velocity equals (v, 0) for some positive v). Some constants, such as the “gravitational constant”, are

left out for simplicity.

9

Constants for the world

ks coefficient of static friction

kd coefficient of dynamic friction

κ1 first coefficient of angular friction

κ2 second coefficient of angular friction

Constants for the vehicle as a whole

m the vehicle’s mass

r the vehicle’s radius

I the vehicle’s moment of inertia = mr2/2

Constants for each motor

pi position of motor i

(ri, θi) position of motor i in polar coordinates

ρi rotation of motor i

The current state

P the old position = (0, 0)
Θ the old rotation = 0

v the vehicle’s velocity = (v, 0)
v̂ the velocity normal = (1, 0)
ω the vehicle’s angular velocity

ω̂ the “normal angular velocity” = the sign of ω, either 1 or −1

fi the amount motor i is firing

∆t the length of a time quantum

Calculated quantities

P′ the new position (the old position equals (0, 0))

Θ′ the new rotation (the old rotation equals 0)

v′ the new velocity

ω′ the new angular velocity

Fm force on the vehicle due to motors

Ff total force on the vehicle (Fm plus friction)

Tm torque on the vehicle due to motors

1. Calculate the new position and rotation:

P′ = P + v∆t

Θ′ = Θ + ω∆t

2. Determine the force and torque due to motors:

Fm =
∑

i

(fi cos ρi, fi sin ρi)

Tm =
∑

i

−firi sin(θi − ρi)

10

3. Adjust the force for friction: If v = 0 and |Fm| < ksm, then Ff = 0; otherwise, Ff = Fm−kdmv̂.

4. Adjust the torque for angular friction: If ω = 0 and |Tm| < κ1I , then Tf = 0; otherwise,

Tf = Tm − κ1I ω̂ − κ2ω.

5. Accelerate the vehicle:

v′ = v + Ff ∆t/m

ω′ = ω + Tf ∆t/I

References

[1] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, 1984.

[2] Robin Edwards. Braitenberg vehicle simulator (one vehicle, C), 1999. http://www.methedrine.

demon.co.uk/vehicles.html.

[3] Chris Gerken. Braitenberg vehicle simulator (many vehicles, Java), 1998. http://www.

mindspring.com/~gerken/vehicles/.

[4] Rosalba Perna. Personal communication, February 1999.

[5] Chris Thornton. Braitenberg vehicle simulator (many vehicles, POPBUGS), 1999. http://www.

cogs.susx.ac.uk/users/christ/popbugs/braitenbergs.html.

[6] Torsten Will. Braitenberg vehicle simulator (many vehicles, Java), 1999. http://www.geocities.

com/Colosseum/3141/Braitenberg.html.

[7] John Wiseman. Braitenberg vehicle simulator (many vehicles, Lisp), 1999. http://www.cs.

uchicago.edu/~wiseman/vehicles/.

[8] MarkZiler. Braitenbergvehiclesimulator(onevehicle, MacromediaShockwave),May1999.http://

www.duke.edu/~mrz/braitenberg/.

11

